skip to main content


Search for: All records

Creators/Authors contains: "Sharma, Renu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Redox‐induced interconversions of metal oxidation states typically result in multiple phase boundaries that separate chemically and structurally distinct oxides and suboxides. Directly probing such multi‐interfacial reactions is challenging because of the difficulty in simultaneously resolving the multiple reaction fronts at the atomic scale. Using the example of CuO reduction in H2gas, a reaction pathway of CuO → monoclinic m‐Cu4O3→ Cu2O is demonstrated and identifies interfacial reaction fronts at the atomic scale, where the Cu2O/m‐Cu4O3interface shows a diffuse‐type interfacial transformation; while the lateral flow of interfacial ledges appears to control the m‐Cu4O3/CuO transformation. Together with atomistic modeling, it is shown that such a multi‐interface transformation results from the surface‐reaction‐induced formation of oxygen vacancies that diffuse into deeper atomic layers, thereby resulting in the formation of the lower oxides of Cu2O and m‐Cu4O3, and activate the interfacial transformations. These results demonstrate the lively dynamics at the reaction fronts of the multiple interfaces and have substantial implications for controlling the microstructure and interphase boundaries by coupling the interplay between the surface reaction dynamics and the resulting mass transport and phase evolution in the subsurface and bulk.

     
    more » « less
  2. null (Ed.)
    Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)* open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10% and a BPCER of 0.46% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments. 
    more » « less
  3. Abstract

    A fundamental knowledge of the unidirectional growth mechanisms is required for precise control on size, shape, and thereby functionalities of nanostructures. The oxidation of many metals results in oxide nanowire growth with a bicrystal grain boundary along the axial direction. Using transmission electron microscopy that spatially and temporally resolves CuO nanowire growth during the oxidation of copper, herein, direct evidence of the correlation between unidirectional crystal growth and bicrystal grain boundary diffusion is provided. Based on atomic scale observations of the upward growth at the nanowire tip, oscillatory downward growth of atomic layers on the nanowire sidewall and the parabolic kinetics of lengthening, it is shown that bicrystal grain boundary diffusion is the mechanism by which Cu ions are delivered from the nanowire root to the tip. Together with density‐functional theory calculations, it is further shown that the asymmetry in the corner‐crossing barriers promotes the unidirectional oxide growth by hindering the transport of Cu ions from the nanowire tip to the sidewall facets. The broader applicability of these results in manipulating the growth of nanostructured oxides by controlling the bicrystal grain boundary structure that favors anisotropic diffusion for unidirectional, 1D crystal growth for nanowires or isotropic diffusion for 2D platelet growth is expected.

     
    more » « less
  4. Abstract

    Synthesis of low‐dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high‐yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent‐grade common sodium‐containing compounds, including NaCl, NaHCO3, Na2CO3, and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na‐based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal‐free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.

     
    more » « less
  5. Abstract

    Synthesis of low‐dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high‐yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent‐grade common sodium‐containing compounds, including NaCl, NaHCO3, Na2CO3, and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na‐based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal‐free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.

     
    more » « less